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Abstract

Background: In the biological sciences the TCID50 (median tissue culture infective dose) assay is often used to
determine the strength of a virus.

Methods: When the so-called Spearman-Kaerber calculation is used, the ratio between the pfu (the number of
plaque forming units, the effective number of virus particles) and the TCID50, theoretically approaches a simple
function of Eulers constant. Further, the standard deviation of the logarithm of the TCID50 approaches a simple
function of the dilution factor and the number of wells used for determining the ratios in the assay. However,
these theoretical calculations assume that the dilutions of the assay are independent, and in practice this is not
completely correct. The assay was simulated using Monte Carlo techniques.

Results: Our simulation studies show that the theoretical results actually hold true for practical implementations of
the assay. Furthermore, the simulation studies show that the distribution of the (the log of) TCID50, although
discrete in nature, has a close relationship to the normal distribution.

Conclusion: The pfu is proportional to the TCID50 titre with a factor of about 0.56 when using the Spearman-
Kaerber calculation method. The normal distribution can be used for statistical inferences and ANOVA on the (the
log of) TCID50 values is meaningful with group sizes of 5 and above.
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1. Introduction
In the TCID50 assay the dilution where there is a 50%
chance that one or more cells are infected, is estimated.
The Spearman-Kaerber calculation method is often used
to accomplish this estimate. The method was inspired
by the articles of Spearman [1] and Kaerber [2] and is
widely used by biologists (see Additional File 1 Appen-
dix, Section 1.1). Finney [3] actually recommends the
Spearman-Kaerber method over the method of Reed
and Muench [4]. The Spearman-Kaerber method is also
recommended by FAO on their web-site [5]. It is well
known that this dilution estimate does not directly give
the pfu, but rather a number that is proportional to the
pfu. In the article by Bryan [6], the author finds that the
pfu/TCID50 ratio must be ln(2) ≈ 0.69. This is however
only true if the TCID50 is calculated using a curve-fit of
the theoretical dilution curve (see Additional File 1

Appendix, Section 1.2):
P (x > 0|K0,D) = 1 − e

−
K0

D
, in

which case you could directly read off the pfu as the
fitted parameter K0 and therefore would not need to cal-
culate a TCID50 value anyway. Here, x is the number of
virus particles found at dilution D, and K0 is the number
of virus particles in the undiluted substrate, i.e. the pfu.
One could argue that such a curve-fit is the more
appropriate approach in calculating the pfu. However,
the simplicity of the Spearman-Kaerber calculation
makes it the method of choice since it gives a number
which is proportional to the pfu. When the Spearman-
Kaerber method is used, the pfu/TCID50 ratio is about
20% lower than that estimated by Bryan, namely
approximately 0.56. This value can be derived from the
theoretical calculation in Govindarajulu [7] as e-g, g
being Euler’s constant 0.5772156649. The standard
deviation of the natural logarithm of the TCID50 is

found to be

√
ln(Df ) ln(2)

n
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factor and n is the number of wells inspected per dilu-
tion step, ibid (see Additional File 1 Appendix, Sections
1.3 and 1.4). Thus, the aim of this paper is to show that
the above theoretical calculations by Govindarajulu [7]
is actually accurate in a practical setup of the TCID50
assay, where the dilutions are not completely indepen-
dent. Further, we aim to show that common statistical
methods, that assumes normal distributions, works well
on the (log) titers produced by the TCID50 assay
although these results are discrete in nature.

2. Methods
2.1 Practical implementation of the TCID50 assay
In the practical implementation here, the dilutions take
place in a series of tubes. The following description of
the assay uses 10 such tubes. Furthermore, it uses a 12
column by 8 row micro titre plate (MTP) and uses a
factor 10 dilution for each dilution step (only the first
10 columns are used for the dilution steps, the two last
columns are for control purposes). At the start, each
tube contains 900 μl of cell culture media. In the first
tube 100 μl of the test sample is added to the 900 μl
cell culture media. Next, 100 μl is transferred from the
first tube to the 2nd tube, then 100 μl is transferred
from the 2nd tube to the 3rd tube and so on until the
10th tube. There is now 900 μl fluid in the tubes 1 to 9
and 1000 μl in tube 10. The 8 wells in the first column
of the MTP each receive 100 μl from the first tube.
Similarly, the 8 wells in the second column of the MTP
receive 100 μl from the second tube each etc. This
means that the each well in the first column of the
MTP contains (about) 1/10 of the infectious units in the
test sample. Each well in the second column of the
MTP contains (about) 1/100 of the infectious units in
the test sample and so on across to the 10th column of
the MTP where each well contains (about) 1/1010 of the
infectious units. In this manner each well in the first
column of the MTP has 100 μl of the virus substrate
diluted with a factor 10, each well in the second column
of the MTP has 100 μl of the virus substrate diluted
with a factor 100, etc. across to the 10th column where
each well in the column of the MTP has 100 μl of the
virus substrate diluted with a factor 1010. Using this
scheme, it is clear that the number of virus particles at
each dilution is not completely independent: if the num-
ber of virus particles is larger than expected at some
dilution step, then it is likely that the number of virus
particles at the next dilution step will also be larger
than expected. Similarly, if the number of virus particles
is smaller than expected at some dilution step, then it is
likely that the number of virus particles at the next dilu-
tion step will also be smaller than expected, i.e. there is
a positive correlation between the dilution steps. The
following Monte Carlo simulation shows that this, in

fact, does not yield a ratio different from the theoretical
pfu/TCID50 ratio above.

2.2 Monte Carlo simulation of the assay
The practical implementation using the above described
scheme was precisely emulated using simulation soft-
ware created by the author Niels Holger Wulff in the
computer language C. The main algorithm is a routine
that takes out a fraction p virus particles from K0 num-
ber of virus particles. The number of virus particles that
is actually taken out, K1, is taken randomly from a bino-
mial distribution:

P (K1|K0) =
(
K0

K1

) (
1 − p

)(K0−K1)pK1

We use the method called Von Neumann rejection to
get and actual value, K1. For more details see Additional
File 1 Appendix, Section 1.5. The random generator
used is the routine RANMAR (based on work by George
Marsaglia, Arif Zaman and Wai Wan Tsang) which is
described in the article of James [8].

3. Results
For the dilution-10 assay (i.e. Df = 10) the average over 51
simulations with log10(K0) values of 3, 3.1, 3.2 ... 8 resulted
in an average of: pfu/TCID50 = 0.5619 (SE = 0.0023). A
dilution-2 assay (i.e. Df = 2) was also simulated (again with
51 log10(K0) values of 3, 3.1, 3.2 ... 8)-here the average was:
pfu/TCID50 = 0.56135 (SE = 0.00019). These two results
should be compared with the theoretical value of e-g =
0.56146. The results indicate that even though the inde-
pendence assumption is theoretically broken somewhat,
the practical impact of this is quite small. It should be
noted though, that due to the discrete nature of the Spear-
man-Kaerber calculation, the individual calculation of the
pfu/TCID50 ratio will vary on the second decimal for the
dilution-10 assay in a systematic way depending of the
value on K0 for a fixed starting dilution. Thus, since we do
not know the pfu (the K0) of a given virus substrate from
the start, it normally only makes sense to state the ratio
with two significant digits as 0.56 for the dilution-10 assay.
For the dilution-2 assay, the ratio can be determined with
one more digit as 0.561. This is similar to the finding in
Finney [3] who finds that the Spearman-Kaerber TCID50
is not an unbiased estimate of the true underlying mean, μ,
but rather depends on the location of μ relative to the near-
est discrete dilution (p. 396). This small systematic varia-
tion also affects the standard deviation of the TCID50
values. For the dilution-10 assay, the average was found to
be 0.194, but varies systematically between about 0.181 and
0.204. This should be compared with the theoretical value:√

ln(10) ln(2)
8

/ ln(10) = 0.194 (we divide with ln(10)
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because the simulation calculations are done on a log10
scale). For the dilution-2 assay the average standard devia-
tion was found to be 0.1061. Again, this should be com-

pared with the theoretical value:

√
ln(2) ln(2)

8
/ ln(10) =

0.1064. Thus, for the standard deviation, the theoretical
values are also very close to those obtained in the Monte
Carlo simulation.

3.1 Distribution of the TCID50 values
The TCID50 values calculated using the Spearman-
Kaerber method are drawn from a discrete distribution.
For the practical implementation we used the base-10
logarithm and a plate with 8 rows yielding a discrete
spacing of 1/8 for the dilution-10 assay.
3.1.1 The simulated values
Figure 1 shows the distribution of 60000 simulated
log10(TCID50) values from a dilution-10 assay com-
pared with the normal distribution.
It is obvious that the discrete distribution of the simu-

lated data can be described using the value of the normal
distribution at the discrete x-values. The discrete titre
values from the Spearman Kaerber calculation will be of
the form: kδ where k is a positive integer and δ is the dis-
tance between two discrete measurements. Due to the
close connection to the normal distribution, a good
approximation for the probability of the log10 titre being
smaller than or equal to a certain discrete value kδ yields:

P (TCID50 ≤ kδ) ≈
∫ (k+0.5)δ

−∞
dx

1√
2πσ

exp
(

− (x − μ)2

2σ 2

)

For an SD of about 0.2 the maximal difference from
the true accumulated sum is only about 0.004 for a

dilution-10 assay. The rationale behind this approxima-
tion simply comes from the so-called midpoint rule for
numerical integration.
3.1.2 Values from actual measurements
Figure 2 illustrates the distribution of 340 measurements
of the control virus generated at Bavarian Nordic. The
measurements are from the period: 16-Mar-2011 to 22-
Jun-2011. The data behind the histograms in Figure 1 and
2 really are discrete, and a test for normality is therefore
not appropriate. However, there is close resemblance to
the values of the normal density function (evaluated at the
discrete values that are the possible outcome of the Spear-
man-Kaerber algotithm): the frequencies from the normal
density function are within the 95% Clopper Pearson con-
fidence interval in all cases for the actual measured
TCID50 values in Figure 2 and in all but one case
(TCID50 = 5.625) for the simulated values in Figure 1.

3.2 ANOVA on TCID50 values
The close connection to the normal distribution suggests
that ANOVA analysis is sensible between groups of dis-
crete log10 titers. To demonstrate this we performed a
number of homoscedastic t-tests on identically distribu-
ted groups made up of the 60000 simulated TCID50 titer
values in Figure 1. The p-value calculation for a homo-
scedastic t-test is mathematically identical with the p-
value from a one-way ANOVA on two groups.
The 60000 simulated TCID50 titers were divided into:

1) 6000 group pairs of 5 TCID50 values (2*5*6000 =
60000)
2) 5000 group pairs of 6 TCID50 values (2*6*5000 =
60000)

Figure 1 Distribution of 60000 log10 titres with an average of
6.24 and a SD of 0.20 compared with the normal distribution
with the same average and SD (both sets of bars have been
normalized). The error bars are 95% Clopper Pearson CI.

Figure 2 Distribution of 340 measured log10 titres with an
average of 8.400 and a SD of 0.229 compared with a normal
distribution with the same average and SD (both sets of bars
have been normalized). The error bars are 95% Clopper Pearson CI.
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3) 3333 group pairs of 9 TCID50 values (2*9*3333 =
59994)
4) 2500 group pairs of 12 TCID50 values (2*12*2500
= 60000)

If the group size is too small one can easily encounter
a situation where the values in each of the two groups
are identical (and hence a t-test/ANOVA is meaning-
less). For a group size of 5 this probability is between 3
and 4 per million (given an SD of 0.194) and therefore
considered negligible for the p-value calculation below
(for group sizes lower than 5 one should consider other
statistical methods than t-test/ANOVA).
For identically normal distributed groups one will expect

that the ANOVA or the homoscedastic t-test have a p-
value below 0.05 for about 5% of the group pairs (given
independence) and similarly that about 1% have a p-value
below 0.01. The results are summarized in Table 1. From
this table it is clear that the t-test creates realistic p-values
for all the four group sizes even though the numbers do
not come from a normal distribution. This indicates that
an ANOVA will give realistic p-values for group sizes
down to 5 discrete log10 titre values for a dilution-10 assay.

4. Discussion
In this paper we have only studied the ideal situation,
where the dilutions are completely precise and the wells
are flawlessly “scored” as positive or negative. Naturally,
this will not be the case in the real world where there will
be both dilution errors and scoring errors. Furthermore, in
the real world there are also day-to-day variations originat-
ing from unknown sources, and usually one will see that
titres of the same material tend to be a little higher in
some periods and a little lower in other periods. Thus, for
real experiments the standard deviation naturally tends to
be larger than the lower bounds described here. Thus, it is

not surprising that the standard deviation of the 340 real
data from the period: 16-Mar-2011 to 22-Jun-2011 in
Figure 2, is larger than 0.194, namely 0.229.
In addition, we have dealt with the dilution-2 assay in the

simulation study as if it was unproblematic to implement.
Unfortunately, this is not the case. The practical problem
here is the number of dilutions needed between the dilution
where all the wells are positive and the dilution where all
the wells are negative, call it the drop length. In order to
make an acceptable calculation, the first column of the
plate must have only positive wells and the last plate must
have only negative wells. Furthermore, control wells are
also required-in our implementation we use two columns
for controls-leaving only 8 columns to encompass the drop.
The simulation study actually showed that about 10% of all
simulated dilution-2 experiments had a drop length above
8. In addition, it is not possible to pre-dilute the sample so
that the first dilution that appears on the plate is the last
dilution where all wells are positive (even if you have some
prior knowledge of the titre). Thus, either two plates or one
bigger plate is needed e.g. a 384 well plate (16 rows by 24
columns). Both solutions will be technically difficult for a
laboratory-technician (for the bigger plate you will probably
need a robot), potentially raising the variation of the assay.
Note, that just 3 independent measurements with a dilu-
tion-10 assay on three 96-well MTP plates yields a theoreti-
cal lower bound of 0.194/

√
3 ≈ 0.112 , which is very close

to the 8 row dilution-2 assay precision of 0.106. Although
one could make use of the extra rows (theoretically this
would increase the precision to a standard deviation of

about 0.106/
√
2 ≈ 0.075) it is questionable whether this

would really be the case for a real implementation since the
assay is technically complicated to perform and therefore
error prone.

5. Conclusion
Monte Carlo simulation shows that in the practical
implementation of the TCID50 assay, described in Sec-
tion 2, the pfu is proportional to the TCID50 titre with
a factor of about 0.56 when using the Spearman-Kaerber
calculation method. This factor is the same as the theo-
retically calculated factor of e-g, g being Euler’s constant
0.5772156649. The simulation further shows that theo-
retically calculated assay standard deviation of the log10

TCID50 values (

√
ln(Df ) ln(2)

n
/ ln (10) ) is close to the

one calculated by the simulation. Although discrete in
nature, the log of the TCID50 titre has a close relation

Table 1 t-tests of groups of group size 5, 6, 9 and 12

Number of t-test’s 6000 5000 3333 2500

Group size 5 6 9 12

Number of p-values less than 0.01 62 44 31 32

Percent p-values less than 0.01 1.0% 0.9% 0.9% 1.3%

Lower 95% Clopper Pearson CI 0.8% 0.6% 0.6% 0.9%

Upper 95% Clopper Pearson CI 1.3% 1.2% 1.3% 1.8%

Number of p-values less than 0.05 303 234 161 130

Percent p-values less than 0.05 5.1% 4.7% 4.8% 5.2%

Lower 95% Clopper Pearson CI 4.5% 4.1% 4.1% 4.4%

Upper 95% Clopper Pearson CI 5.6% 5.3% 5.6% 6.1%

Table 2 Example of a dilution series

Log10(D) 1 2 3 4 5 6 7 8 9 10

Fraction of wells with positive response 1.000 1.000 1.000 1.000 1.000 1.000 0.875 0.125 0.000 0.000
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to the normal distribution which can be used for statis-
tical inferences. Finally, ANOVA seems to be meaning-
ful comparing groups of log-titre results when the group
sizes are 5 or above.

Additional material

Additional file 1: Appendix. The Spearman-Kaerber calculation method
(example), The theoretical dilution curve, The theoretical pfu/TCID50
ratio, The theoretical standard deviation of the Spearman-Kaerber
calculation, The Monte Carlo simulation program (the take-out algorithm
and the simulation procedure in pseudo code), [[7,9] and Figure 3].

List of abbreviations
ANOVA: Analysis of Variance; MTP: Micro Titre Plate; pfu: the number of
plaque forming units; TCID50: Median Tissue Culture Infective Dose.
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Figure 3 The dilution curve for the example in Section 1.1 of
the Appendix in the additional file 1.
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