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Abstract

differentially regulated genes.

Background: Peripheral arterial disease (PAD) is a relatively common manifestation of systemic atherosclerosis that
leads to progressive narrowing of the lumen of leg arteries. Circulating monocytes are in contact with the arterial
wall and can serve as reporters of vascular pathology in the setting of PAD. We performed gene expression
analysis of peripheral blood mononuclear cells (PBMC) in patients with PAD and controls without PAD to identify

Methods: PAD was defined as an ankle brachial index (ABI) <0.9 (n = 19) while age and gender matched controls
had an ABI > 1.0 (n = 18). Microarray analysis was performed using Affymetrix HG-U133 plus 2.0 gene chips and
analyzed using GeneSpring GX 11.0. Gene expression data was normalized using Robust Multichip Analysis (RMA)
normalization method, differential expression was defined as a fold change >1.5, followed by unpaired Mann-
Whitney test (P < 0.05) and correction for multiple testing by Benjamini and Hochberg False Discovery Rate. Meta-
analysis of differentially expressed genes was performed using an integrated bioinformatics pipeline with tools for
enrichment analysis using Gene Ontology (GO) terms, pathway analysis using Kyoto Encyclopedia of Genes and
Genomes (KEGG), molecular event enrichment using Reactome annotations and network analysis using Ingenuity
Pathway Analysis suite. Extensive biocuration was also performed to understand the functional context of genes.

Results: We identified 87 genes differentially expressed in the setting of PAD; 40 genes were upregulated and 47
genes were downregulated. We employed an integrated bioinformatics pipeline coupled with literature curation to
characterize the functional coherence of differentially regulated genes.

Conclusion: Notably, upregulated genes mediate immune response, inflammation, apoptosis, stress response,
phosphorylation, hemostasis, platelet activation and platelet aggregation. Downregulated genes included several
genes from the zinc finger family that are involved in transcriptional regulation. These results provide insights into
molecular mechanisms relevant to the pathophysiology of PAD.
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Introduction

Peripheral arterial disease (PAD) affects more than eight
million adults in the United States and is associated with
significant mortality and morbidity [1-6]. PAD is a surro-
gate for diffuse atherosclerosis but is often underdiagnosed
[4,6]. Identification of differentially regulated genes in the
setting of PAD may lead to potential biomarkers for the
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earlier detection and prognostication of this disease and
provide insights into its pathophysiology.

Gene expression analysis of peripheral blood mono-
nuclear cells (PBMC) in asymptomatic individuals has
previously revealed individual genetic variation and dif-
ferentially regulated expression patterns [7,8]. Circulat-
ing peripheral blood cells have been used to examine
differentially regulated genes in several cardiovascular
disorders. For example, gene expression profiling studies
of blood cells have identified differentially regulated
genes and pathways in hypertension [9], coronary artery
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disease [10,11] and ischemic stroke [1,10,12-16]. How-
ever, genes differentially expressed in PBMC in the
setting of PAD have yet to be identified. Circulating
PBMC are in contact with the arterial wall and may be
useful in investigating molecular mechanisms relevant to
PAD. We therefore performed gene expression analysis
to identify differentially expressed genes in PBMC in the
setting of PAD.

Materials and methods

Participant recruitment and sample characteristics

The Mayo Clinic Institutional Review Board approved
the study and all participants provided written informed
consent. The participants were recruited from the Mayo
non-invasive vascular laboratory and PAD was defined as
an ankle brachial index (ABI) <0.9 (n = 19) while age and
gender matched controls had an ABI > 1.0 (n = 18). ABI
was measured in both the lower extremities and the
lower of the two values was recorded for the analysis
[17]. Individuals with poorly compressible arteries or aor-
tic aneurysmal disease were excluded.

Isolation of peripheral blood mononuclear cells (PBMC)
and RNA isolation

PBMC were isolated by density gradient centrifugation by
layering the blood samples over histopaque (Sigma-
Aldrich, St. Louis, MO),[18]. In brief, 18 ml of whole
blood was mixed with equal amount of PBS (Bio-Rad,
Hercules, CA), and layered over 12 ml of histopaque 1077
(used for cell separation). The PBMC layer was removed,
washed, and centrifuged twice with Hank’s Balanced Salt
Solution (HBSS) (Sigma-Aldrich, St. Louis, MO). The pel-
let formed after double centrifugation was re-suspended in
Complete RPMI-10 medium. The cells were counted
using a hemocytometer and processed for RNA isolation
using RNeasy Plus Mini Kit (Qiagen, Valencia, CA), and
additionally with TRIzol (Invitrogen, Carlsbad, CA). For
the RNeasy kit, PBMCs were disrupted and homogenized
using RLT buffer (Qiagen, Valencia, CA). The RNeasy kit
includes gDNA eliminator spin column for the removal of
genomic DNA from the sample, allowing subsequent puri-
fication of RNA. The flow through from the gDNA col-
umn was mixed with ethanol and placed on the RNeasy
spin column. This spin column uses a silica gel based
membrane for effective binding and purification of RNA.
Total RNA was eluted in RNase free water, quantified
using NanoDrop 1000 (Thermo Scientific, Wilmington,
DE) and stored at —80°C.

Microarray analysis

RNA quantity and quality were assessed using Agilent
2100 Bioanalyzer (Agilent, Santa Clara, CA); 100 ng of
total RNA was used for generation of biotin labeled
cRNA using Affymetrix Two-Cycle cDNA Synthesis Kit
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(Affymetrix, Santa Clara, CA). After the first cycle, in
vitro transcription-based (IVT) amplification of cRNA
was carried out using MEGAscript T7 kit (Applied Bio-
systems/Ambion, Austin TX). With the second cycle
c¢DNA synthesis, biotin labeled cRNA was generated
using the Affymetrix IVT labeling Kit. The labeled
cRNA was cleaned, quantified and after fragmentation,
hybridized to Affymetrix HG-U133 Plus2.0 GeneChips.
The chips were stained with streptavidin phycoerythrin
and biotinylated antibody and washed at an Affymetrix
Fluidics station 450. The GeneChips were scanned and
data extracted using GeneChip scanner 3000 (Affyme-
trix, Santa Clara, CA) and the raw data file formats were
generated using GeneChip operating software (GCOS).

Data processing and statistical analysis

Raw gene expression data were analyzed using the Gen-
eSpringGx 11.0 software (Agilent® Technologies, Santa
Clara, CA). All samples were normalized and summar-
ized by Robust Multichip Analysis (RMA) normalization
method, which includes background correction, normal-
ization and calculation of expression values [19]. Base-
line was set to median for all samples, where median of
the log-transformed value of each probe from all sam-
ples was calculated and this value was subtracted from
all samples. Probes were filtered and eliminated on
expression level as part of quality control (QC) and
probes with expression values <20% were excluded. Of
the remaining probes, those with a 1.5-fold-change dif-
ference between the groups underwent unpaired Mann-
Whitney test and multiple testing correction was per-
formed using Benjamini and Hochberg False Discovery
Rate (FDR). Following statistical analysis and probe
mapping, 47 genes were upregulated and 39 genes were
downregulated. Differentially expressed probes were
clustered using MultiExperiment Viewer (MeV v4.5
[20]) (Figure 1). The clustering figure shows a distinct
pattern of upregulated and downregulated probes in
cases when compared to the controls.

Validation using real-time PCR

To validate our findings from gene expression analysis,
we performed real-time PCR of the Syntaxin 11
(STX11), a gene not previously associated with PAD.
STXI11 is a component of t-SNARE complex and
involved in endocytic vesicular transport, regulate pro-
tein transport among late endosomes and the trans-
Golgi network and may have functional or regulatory
role in vascular diseases. RNA derived from PAD and
control samples was converted to cDNA by reverse
transcription using Transcriptor First Strand cDNA
Synthesis kit (Roche, OH, USA) and used immediately
for real-time PCR. The FASTA sequence of each gene
of interest was obtained using NCBI nucleotide search
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Figure 1 Hierarchical clustering of differentially regulated genes in the setting of PAD. Clustering was performed using hierarchical
clustering algorithm with Euclidean distance and average linkage clustering method.
.

to design the primers http://www.ncbi.nlm.nih.gov/nuc-
core. This FASTA sequence was used as query to search
in NCBI Primer BLAST http://www.ncbi.nlm.nih.gov/
tools/primer-blast/index.cgi?LINK_LOC=BlastHome.
Primers pairs were selected based on primer length (18-
30 bp), GC content, melting temperature (T,,, = 59-60°C),
and product size. Primers were selected that scan exon-
exon junctions. BLAST was used to check the specificity
of primers to the gene of interest. PAGE-purified oligos
(Integrated DNA Technologies, IA, USA) were used for
real-time PCR. Primer sequences are available from the
corresponding author upon request. Real-time PCR assay
was performed using the LightCycler 480 instrument
(Roche) and the LightCycler 480 SYBR Green I Master kit
and protocol. Each sample was assayed in duplicate for the
genes of interest as well as f3-actin (ACTB) as a house-
keeping gene for normalization. Samples were assayed in
384-well plates with a 20 pL reaction volume. (10 uL mas-
ter mix (FastStart Taq DNA polymerase, reaction buffer,
dNTPs, SYBR Green I dye, and MgCl,), 3uL. PCR-grade
water, 1 uL each 2 nM primer, and 5 uL (32 ng) cDNA
template. Raw Cp values were calculated using the Abs
Quant/2" derivative max option in Roche’s LightCycler
480 software (release 1.5.0 SP3).

Functional annotation of differentially regulated genes
using in-silico approach

To assess the functional repertoire of differentially
expressed genes we adopted a multi-tiered

bioinformatics annotation pipeline with functional
enrichment calculations, pathway and molecular event
analysis, biological network analysis and biocuration.
Statistically significant genes and annotations were used
as pointers to perform literature curation to derive bio-
logical role of genes differentially regulated in the setting
of PAD. Preliminary functional annotations of differen-
tially regulated genes were derived using BioGPS [21].
GO term enrichment analysis was performed using
DAVID v6.7 [22,23]. As no single annotation resource
provides information about all available biological path-
ways, we used two different pathway databases (Reac-
tome v36.2 [24] and Kyoto Encyclopedia of Genes and
Genomes (KEGG) [25]) to identify the biological path-
ways mediated by differentially expressed genes. Reac-
tome based pathway enrichment analysis was performed
using Reactome Pathway Analysis tool http://www.reac-
tome.org/ReactomeGW T /entrypoint.html#PathwayAna-
lysisDataUploadPage. This two-fold approach was useful
in finding several relevant pathways from two different
pathway analyses. Ingenuity Pathway Analysis® suite
(IPA v9.0 - 3211, http://www.ingenuity.com) was used
to understand functional networks involved in the gene
sets. IPA-Tox", a data analysis routine within IPA that
assess potential toxicity with various compounds using
toxicogenomics data was also used to interpret the func-
tional context of differentially regulated genes. Finally, to
understand the functional context and biological signifi-
cance of differentially expressed genes relevant to PAD,
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scientific literature was curated using Gene Related
InFormation (GeneRIF http://www.ncbi.nlm.nih.gov/pro-
jects/GeneRIF) and ‘related articles by PubMed’ in the
‘Entrez Gene’ http://www.ncbi.nlm.nih.gov/gene page.

Results

Patient characteristics are summarized in Table 1. The
PBMC from patients with PAD differentially expressed
87 genes involved in immune response, inflammation,
phosphorylation, signal transduction, platelet aggrega-
tion, vitamin metabolism, hemostasis, oxidative stress
and transcriptional regulation.

Differentially expressed genes

Based on the comparisons of cases and controls, after
initial data filtering and at a 1.5 fold change, 95 probes
were differentially expressed (P < 0.05; ) (Table 2). A
subset of probes was not annotated in Affymetrix anno-
tation files. We obtained enhanced probe mapping by
combining results from multiple probe mapping tools
AILUN [26], BioMart [27] and GATExplorer [28]. Final
probe mapping was performed using the union of
mapped results obtained from these methods. NCBI-
Gene and UCSC genome browser [29] were also con-
sulted for annotation and integration of probe and gene
related information. Statistically significant probes,
mapped genes, P-value, fold change absolute (FCA) and
directions of expression (regulation) are summarized in
Table 2. Ten downregulated probes were not mapped to
a valid gene using the probe mapping approach that we
employed and were manually mapped using Ensembl
v58 annotations [30]. For example probe “241838_at”
(FCA 1.53) was not mapped to a valid gene using our

Table 1 Sample characteristics

Characteristic Samples P-
value
Cases (n = Controls (n =
19) 18)
Age, years 6957 +9.18  66.88 + 944 0.54
Men, % 13 (68%) 13 (72%) 0.99
Ever smoker, % 17 (89%) 12 (66%) 0.15
BMI, l<g~m'2 2853 + 525 306 £ 599 0.27
Systolic BP, mm Hg 1392 + 2327 1324 + 20.1 047
Diastolic BP, mm Hg 742 £ 11.66 80.1 £ 123 0.15
HDL cholesterol, mg/dl 4412 + 859 49.7 £ 15 038
Hypertension, % 17 (89.4%) 13 (72%) 0.18
Diabetes, % 5 (26%) 4 (22%) 0.69
Lipid-lowering medication, 11 (57%) 12(66%) 0.85
%
Ankle-brachial index 048 + 0.20 112 £ 007 <0.001
WBC count, pL 803 + 234 726 £ 1.10 0.18

Values are expressed as either ‘mean + standard deviation’ or as ‘'n (%)’
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probe mapping strategy but using Ensembl v58 [30] the
probe was mapped to a non-coding transcript RP1-
167A14.2. One probe “243310_at” could not be mapped
to any known gene using the probe mapping databases
or Ensembl annotations.

Real-time quantitative PCR analysis

The raw data (Cp values) were read in the R software
(version 2.12.0) and the non-parametric Mann-Whitney
unpaired test was used for analyzing the target gene
STX11 in reference to the housekeeping gene ACTB. Cp
values of ACTB were used for normalization. Using RT-
qPCR, STX11 was successfully amplified and confirmed
to have significant differential expression (P = 0.036).

In-silico analysis of differentially expressed genes

The differentially expressed genes were analyzed using a
bioinformatics pipeline to understand the functional role
of the genes. A flow-chart of the multi-tiered bioinfor-
matics approach is provided in Figure 2. Multiple
resources were integrated in the pipeline to provide a
cohesive view of biological functions and pathways asso-
ciated with the differentially expressed genes. Results
from enrichment analysis using GO terms (Tables 3 and
4), pathway analysis using KEGG pathways (Table 5)
and enrichment analysis of molecular event analysis
using Reactome annotations (Table 6) are provided.
Interactions within the differentially regulated genes
were identified using biological network analysis utilities
in IPA (Tables 7 and 8). Brief description of methodol-
ogy and results from various approaches are provided.

GO terms associated with differentially expressed genes
GO enrichment analysis was performed using GO Fat
(collection of broadest GO terms curated from GO
annotations dataset) based annotations using DAVID
[23,31]. The background was defined as the ‘Human
Genome U133 Plus 2’ annotation and the differentially
expressed genes from the study were input for assessing
the enrichment. The upregulated and downregulated
probe set identifiers were used as input and enrichment
was analyzed separately and the results provided for the
significantly enriched terms using Fisher’s exact test
using the EASE modification (P < 0.05) and multiple
testing correction was performed using Benjamini-
Hochberg FDR method. The P-value for each GO term
reflects the enrichment in frequency of that GO term in
the input entity list (differentially regulated probe set
identifiers) relative to all entities in the background list
(probe identifiers in Human Genome U133 Plus 2).
Among different GO terms of upregulated genes, sev-
eral enriched terms in ‘biological process’ (Table 3 and
Additional file 1: Table S1) categories were related to
molecular mechanisms associated with inflammation
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Table 2 Differentially expressed probes/genes in the setting of peripheral arterial disease

Upregulated Probe ID Gene name (HUGO) Gene symbol  P-value FCA
219326_s_at UDP-GIcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 2 B3GNT2 0.032 153
205681_at BCL2-related protein Al BCL2A1 0.008 1.73
215440_s_at brain expressed, X-linked 4 BEX4 0.004 1.50
1554229 _at chromosome 5 open reading frame 41 C5orf41 0.004 1.51
202284 s_at cyclin-dependent kinase inhibitor 1A (p21, Cip1) CDKNTA 0.024 1.62
208791_at clusterin CLU 0.029 1.84
208792_s_at clusterin CcLu 0.038 183
226702_at cytidine monophosphate (UMP-CMP) kinase 2, mitochondrial CMPK2 0.039 154
225557 _at cysteine-serine-rich nuclear protein 1 CSRNPIT 0.032 1.57
211919 s_at chemokine (C-X-C motif) receptor 4 CXCR4 0.039 1.59
208811_s_at DnaJ (Hsp40) homolog, subfamily B, member 6 DNAJB6 0.004 153
204751_x_at desmocollin 2 DSC2 0.007 1.68
226817_at desmocollin 2 DSC2 0.007 1.99
201044_x_at dual specificity phosphatase 1 DUSPI1 0.043 1.94
209457 _at dual specificity phosphatase 5 DUSP5 0.008 1.56
219872_at family with sequence similarity 198, member B FAM198B 0.003 1.51
207674 _at Fc fragment of IgA, receptor for FCAR 0.012 1.99
211307_s_at Fc fragment of IgA, receptor for FCAR 0012 1.72
221345_at free fatty acid receptor 2 FFAR2 0.007 234
209189_at FBJ murine osteosarcoma viral oncogene homolog FOS 0.01 1.70
213524 _s_at GO/G1switch 2 G0S2 0.024 390
207387_s_at glycerol kinase GK 0.035 161
208524 _at G protein-coupled receptor 15 GPR15 0.024 1.66
211555_s_at guanylate cyclase 1, soluble, beta 3 GUCY1B3 0.011 1.59
214455_at histone cluster 1, H2bg HISTTH2BG 0.041 1.88
1555464 _at interferon induced with helicase C domain 1 IFIHT 0.026 1.55
211506_s_at interleukin 8 IL8 0.022 3.69
220266_s_at Kruppel-like factor 4 (gut) KLF4 0.034 161
208960_s_at Kruppel-like factor 6 KLF6 0.038 1.88
217738_at nicotinamide phosphoribosyltransferase NAMPT 0.027 1.73
217739_s_at nicotinamide phosphoribosyltransferase NAMPT 0.021 1.80
243296_at nicotinamide phosphoribosyltransferase NAMPT 0.008 2.00
203574 _at nuclear factor, interleukin 3 regulated NFIL3 0.008 1.55
216015_s_at NLR family, pyrin domain containing 3 NLRP3 0.041 152
205660_at 2-5-oligoadenylate synthetase-like OASL 0.035 1.50
224102_at purinergic receptor P2Y, G-protein coupled, 12 P2RY12 0.022 1.56
201120_s_at progesterone receptor membrane component 1 PGRMCT 0.008 1.54
210845_s_at plasminogen activator, urokinase receptor PLAUR 0.004 1.60
211924 s_at plasminogen activator, urokinase receptor PLAUR 0.004 1.76
204285_s_at phorbol-12-myristate-13-acetate-induced protein 1 PMAIP1 0.005 1.52
202014_at protein phosphatase 1, regulatory (inhibitor) subunit 15A PPPIR15A 0.012 1.96
37028_at protein phosphatase 1, regulatory (inhibitor) subunit 15A PPPIR15A 0.008 1.87
1554997_a_at prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and PTGS2 0.025 277
cyclooxygenase)
200730_s_at protein tyrosine phosphatase type IVA, member 1 PTP4A1 003 162
1569599 _at SAM domain, SH3 domain and nuclear localization signals 1 SAMSN1T 0.006 172
222088_s_at solute carrier family 2 (facilitated glucose transporter), member 14 SLC2AT4 0.033 1.56
215223_s_at superoxide dismutase 2, mitochondrial SOD2 0.038 157
205214 _at serine/threonine kinase 17b STK17B 0.004 1.60
210190_at syntaxin 11 STX11 0.003 1.65
1552542 s _at T-cell activation RhoGTPase activating protein TAGAP 0.004 1.66

235086_at thrombospondin 1 THBS1 0.038 2.12
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Table 2 Differentially expressed probes/genes in the setting of peripheral arterial disease (Continued)

221060_s_at toll-like receptor 4 TLR4 0.025 1.82
206116_s_at tropomyosin 1 (alpha) TPM1 0.013 158
241133_at T cell receptor beta constant 1 TRBC1 0.048 191
Downregulated Probe Gene name (HUGO) Gene name P-value FCA
ID

239661_at AF4/FMR2 family, member 1 AFF1 0.022 163
220467_at - AL590452.1 0.043 1.56
236921_at - AL592494.5 0.027 1.64
238807_at ankyrin repeat domain 46 ANKRD46 0.038 1.53
216198_at activating transcription factor 7 interacting protein ATF7IP 0.026 1.50
236307_at BTB and CNC homology 1, basic leucine zipper transcription factor 2 BACH?2 0.039 2.1
236796_at BTB and CNC homology 1, basic leucine zipper transcription factor 2 BACH?2 0.015 1.70
244172_at B-cell linker BLNK 0.043 178
227576_at BMP2 inducible kinase-like BMP2KL 0.048 1.83
244425 _at chromosome 14 open reading frame 43 Cl4orf43 0.03 1.65
238635_at chromosome 5 open reading frame 28 C5orf28 0.00E 2.03

+00
232330_at chromosome 7 open reading frame 44 C7orf44 0.046 1.58
239545_at CAS1 domain containing 1 CASD1 0.024 1.64
1564164 _at DENN/MADD domain containing 1B DENND1B 0.048 153
230653_at DIS3 mitotic control homolog (S. cerevisiae)-like 2 DIS3L2 0.039 177
244876_at early B-cell factor 1 EBF1 0034 1.50
230983_at family with sequence similarity 129, member C FAM129C 0.043 163
1563674 _at Fc receptor-like 2 FCRL2 0.041 1.68
228623 _at FTX transcript, XIST regulator (non-protein coding) FTX 0.048 1.82
1562289 _at G protein-coupled receptor 141 GPR141 0.036 1.66
206785_s_at killer cell lectin-like receptor subfamily C, member 1 KLRC1 0.035 1.69
224559_at metastasis associated lung adenocarcinoma transcript 1 (non-protein coding) MALAT1 0.032 1.68
243736_at methyltransferase like 15 METT5D1 0.034 1.59
232478_at MIR181A2 host gene (non-protein coding) MIR181A2HG 0.021 152
228623_at FTX transcript, XIST regulator (non-protein coding) FTX 0.048 1.82
243310_at - - 0.017 152
239673_at nuclear receptor subfamily 3, group C, member 2 NR3C2 0.037 1.94
240128_at 5-nucleotidase, cytosolic Ill NT5C3 0.03 157
1559054 _a_at protein phosphatase 1, regulatory (inhibitor) subunit 7 PPPIR7 0.004 1.60
238875_at RANBP2-like and GRIP domain containing 1 RGPD1 0.026 150
241838_at - RP1-167A14.2 0.034 154
242239_at - RP11-139J15.3 0.008 155
228390_at - RP11- 0.033 157
659G9.3001

213939_s_at RUN and FYVE domain containing 3 RUFY3 0.035 1.50
244267 _at SATB homeobox 1 SATBI1 0.025 1.81
236561_at transforming growth factor, beta receptor 1 TGFBR1 0.033 1.66
236427_at WW domain containing oxidoreductase WWOX 0.035 161
1556543 _at zinc finger, CCHC domain containing 7 ZCCHC7 0.041 1.68
228157_at zinc finger protein 207 ZNF207 0.027 201
236562_at zinc finger protein 439 ZNF439 0.015 1.51
240155_x_at zinc finger protein 479 ZNF479 0.012 1.52
1558486_at zinc finger protein 493 ZNF493 0.012 1.53

FCA = Fold change absolute
- = HUGO Gene Nomenclature Committee (HGNC) assigned unique gene name is not available
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Figure 2 Bioinformatics pipeline used for the biological interpretation of differentially expressed genes.

(inflammatory response; response to protein stimulus,
response to organic substance, cytokine activity);
immune response (defense response, regulation of
response to external stimulus), cell death (induction of
apoptosis by extracellular signals, regulation of cell pro-
liferation, positive regulation of anti-apoptosis, regula-
tion of apoptosis) and stress response (response to
oxidative stress, response to reactive oxygen species,
response to hyperoxia). Other important biological pro-
cesses mediated by upregulated genes were regulation of
peptidase activity, caspase activity and endopeptidase

with upregulated genes (Figure 3) were created using
REVIGO [32]. Molecular functions of the upregulated
genes included phosphatase activity. GO terms asso-
ciated with downregulated genes were enriched for var-
ious terms related to transcriptional regulation. These
results indicate that the PBMC, in the setting of PAD,
differentially express genes involved in inflammation,

Table 4 Statistically significant GO terms derived from
downregulated genes

. K g . K Gene Ontology ID: Term P-value
activity. A visual summary of GO identifiers associated 9
Molecular function
.. . . GO:0006355: regulation of transcription, DNA-dependent 0.000
Table 3 Statistically significant GO terms derived from £l _ P _ P
upregulated genes GO:0051252: regulation of RNA metabolic process 0.000
Gene Ontology ID: Term p. GO:0045449: regulation of transcription 0.000
value GO:0006350: transcription 0.004
Biological process GO:0045941: positive regulation of transcription 0.042
see Additional file 1: Table 51 GO:0010628: positive regulation of gene expression 0.045
Cellular component
GO:0005886: plasma membrane 0.043 Biological process
. GO:0003677: DNA binding 0.001
Molecular function
GO:0003690: double-stranded DNA binding 0034 GO:0030528: transcription regulator activity 0.001
GO:0004725: protein tyrosine phosphatase activity 0.040 GO:0003700: transcription factor activity 0.002
G0O:0033549: MAP kinase phosphatase activity 0.040 GO:0046914: transition metal ion binding 0.040
GO:0017017: MAP kinase tyrosine/serine/threonine phosphatase  0.040 GO:0008270: zinc ion binding 0043
activity GO:0046983: protein dimerization activity 0.049
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Table 5 KEGG Pathway enrichment analysis results

KEGG ID  Pathway Name P-value
KEGG Pathways mediated by upregulated genes

path:05219  Bladder cancer 0.000
path:05144  Malaria 0.000
path:04115  p53 signaling pathway 0.000
path:05140  Leishmaniasis 0.001
path:05164  Influenza A 0.001
path:05323 Rheumatoid arthritis 0.001
path:04620  Toll-like receptor signaling pathway 0.001
path:05142  Chagas disease (American trypanosomiasis) 0.001
path:04145 Phagosome 0.005
path:05200 Pathways in cancer 0.005
path:04621  NOD-like receptor signaling pathway 0.007
path:04622  RIG-I-like receptor signaling pathway 0.010
path:04010  MAPK signaling pathway 0.021
path:05146  Amoebiasis 0.022
path:00533  Glycosaminoglycan biosynthesis - keratan sulfate  0.032
path:05162  Measles 0.034
path:05160 Hepatitis C 0.034
KEGG Pathways mediated by downregulated genes

path:04380 Osteoclast differentiation 0016
path:00760 Nicotinate and nicotinamide metabolism 0.037

immune response, apoptosis, molecular specific func-
tions mediated by peptidase, caspase and stress response
related pathways. Results of the GO annotation based
enrichment analysis of upregulated and downregulated
genes are summarized in Tables 3 and 4.

KEGG pathways associated with differentially expressed
genes

SubPathwayMiner was used to assess the statistical signifi-
cance of KEGG pathways associated with differentially
expressed genes. Probes were mapped to genes identifiers
and gene identifiers were used as the input in the statisti-
cal analysis. The enrichment analysis revealed that 17
pathways were associated with upregulated genes and two
pathways were significant in downregulated genes (P <
0.05) and multiple testing correction was performed using
EDR. Analysis of KEGG pathway classes indicates that
these pathways mediate cellular processing, signal trans-
duction, immune system and infectious diseases. These
analyses suggest that perturbations in multiple signaling
and cellular mechanisms occur in PBMC in the setting of
PAD. Significantly enriched pathways and corresponding
P-values are listed in Table 5.

Molecular events associated with PAD
Compared to classical biological pathway databases, Reac-
tome provides biological processes as a series of molecular
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Table 6 Reactome molecular events enriched in
upregulated genes

Reactome Pathway P-
value
Platelet Activation 0011
Formation of Platelet plug 0.015
Exocytosis of platelet alpha granule contents 0016
Metabolism of water-soluble vitamins and cofactors 0.017
Chemokine receptors bind chemokines 0.021
Metabolism of vitamins and cofactors 0.022
Liganded Gi-activating GPCR acts as a GEF for Gi 0.023
The Ligand:GPCR:Gi complex dissociates 0.023
Liganded Gi-activating GPCRs bind inactive heterotrimeric G- 0.023
protein Gi
NFkB and MAP kinases activation mediated by TLR4 signaling ~ 0.025
repertoire
Hemostasis 0.027
MyD88-independent cascade initiated on plasma membrane 0.028
G alpha (i) signalling events 0.029
Class A/1 (Rhodopsin-like receptors) 0.030
Toll Like Receptor 10 (TLR10) Cascade 0.033
Toll Like Receptor 5 (TLR5) Cascade 0.033
MyD88 cascade initiated on plasma membrane 0.033
MyD88:Mal cascade initiated on plasma membrane 0.035
Toll Like Receptor TLR1:TLR2 Cascade 0.035
Toll Like Receptor TLRE:TLR2 Cascade 0.035
Toll Like Receptor 2 Cascade 0.035
Activated TLR4 signalling 0.040
Platelet degranulation 0.041
Toll Like Receptor 4 (TLR4) Cascade 0.042
Response to elevated platelet cytosolic Ca2+ 0.046

events and is thus a unique resource for functional inter-
pretation of genes lists with a wide array of pathways, spe-
cific biological process and molecular events. We used the
probe identifiers as the input for Reactome based enrich-
ment analysis to find molecular events associated with dif-
ferentially expressed genes using a hypergeometric test (P
< 0.05). Pathway analysis using Reactome showed that
upregulated genes were implicated in five platelet related
pathways (platelet activation, formation of platelet plug,
exocytosis of platelet alpha granule contents, platelet
degranulation and response to elevated platelet cytosolic
Ca2+). Two vitamin metabolism related events (Metabo-
lism of water-soluble vitamins and cofactors, Metabolism
of vitamins and cofactors) were also associated with upre-
gulated genes (Table 6). Similar to KEGG pathway enrich-
ment (Table 5), we also observed enrichment of several
signal transduction events in the Reactome analysis. There
was no significant enrichment of molecular events
observed in the downregulated genes.
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Table 7 Biological networks derived using IPA network analysis

Top networks derived using upregulated genes

Associated functional network Score
Cell Death, Renal Necrosis/Cell Death, Cancer 39
Cardiovascular Disease, Hematological Disease, Infection Mechanism 24
Inflammatory Response, Embryonic Development, Cell-To-Cell Signaling and Interaction 21
Neurological Disease, RNA Post-Transcriptional Modification 2
Cardiovascular Disease, Genetic Disorder, Cellular Function and Maintenance 2
Top networks derived using downregulated genes

Cellular Development, Cellular Assembly and Organization, Cell Cycle 13
Genetic Disorder, Ophthalmic Disease, Nervous System Development and Function 3
Embryonic Development, Gene Expression, Protein Trafficking 3
Cellular Assembly and Organization, Cell Morphology, Cellular Function and Maintenance 2

Functional network inferred using IPA

We used IPA to understand the functionally significant
biological networks and toxicogenomics associations
mediated by the differentially expressed genes in the
setting of PAD. IPA analysis was performed using
probe identifiers as the input; the reference dataset
was defined as ‘Human Genome U133 Plus 2’; direct
interactions only were considered for the analysis. Bio-
logical network (Table 7) and toxicity functions (Table
8) derived from IPA are provided and illustrated in
Figure 4 (a) (merged view of networks derived from
upregulated genes) and Figure 4 (b) (merged view of
networks derived from downregulated genes). Different
shapes of nodes indicate “Family” of a given gene
assigned using IPA annotations. Color of node indi-
cates the presence (grey) or absence (white) of a given
gene in the study. Nodes that are not represented in
the study (white nodes) were retained in the network
for a context dependent view of the functional interac-
tome. Edges shared between six different functional
networks derived from upregulated genes were high-
lighted (Figure 4 (a)). Downregulated genes do not
share any common nodes between the derived func-
tional networks (Figure 4 (b)). It should be noted that
upregulated genes interacted with several core genes
(interactions are highlighted with edges colored in
orange) that are present in multiple networks, where

Table 8 Toxicity functions derived from IPA network
analysis

Top Tox lists derived from upregulated genes

Name P-value
Renal Necrosis/Cell Death 0.000
Liver Necrosis/Cell Death 0.000
Increases Renal Proliferation 0.001
Oxidative Stress 0.001
Cardiac Necrosis/Cell Death 0.002

as the downregulated genes did not interact with the
core genes. These results suggest that that upregulated
genes identified in our study may influence multiple
functional networks via interaction with the core
genes. Further studies are required to understand role
of these genes in the pathophysiology of PAD.

Biocuration of differentially expressed genes

We performed in-depth biocuration of differentially
regulated genes using a combination of resources. For a
given differentially expressed gene we consulted General
annotation under the Comments section in UniProt,
RefSeq summary, GeneRIF and publications linked
under “Related Articles” in PubMed section of “Biblio-
graphy” in individual Gene pages. Biocuration was per-
formed to manually extract the role of differentially
expressed pertaining to vascular diseases including PAD
from previous literature reports. Curated data with func-
tional context and role of genes in vascular diseases and
associated references are presented in Additional file 1:
Table S2. This approach further helped to extract func-
tionally relevant information not captured by ontologies
or annotations in automated analytical frameworks used
in enrichment tools.

Discussion

We report for the first time gene expression analysis of
PBMC to identify genes differentially expressed in
patients with PAD. Enrichment analysis of GO terms
and pathways associated with these genes provide
insights into several known and novel molecular
mechanisms related to PAD. The two genes with highest
fold change absolute (FCA) were: GO/G1switch 2 (G0S2;
FCA: 3.90; 1) BTB and CNC homology 1, basic leucine
zipper transcription factor 2 (BACH2; FCA: 2.10; |).
GO0S2 is a novel target of peroxisome-proliferator-acti-
vated receptor (PPAR) involved in adipocyte differentia-
tion [33,34]. BACH2 is a transcriptional regulator that
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Figure 3 Statistically significant GO terms (Biological Process category) derived from upregulated genes.

acts as repressor or activator through the nuclear factor
(erythroid-derived 2), 45 kDa (NFE2) binding sites
[35,36]. Differentially regulated genes, summarized in
Table 2 are ideal candidates for further, down-stream
functional studies.

Biological relevance of differentially expressed genes in
the setting of PAD

Knowledge-based statistical analysis of differentially
expressed genes provided molecular clues for the inter-
pretation of the function or pathways associated with
these genes. We used the statistically significant genes,
GO terms and pathways as leads to perform in-depth

literature curation. The detailed literature curation indi-
cated that the genes identified in this study are relevant
to various aspects of vascular biology and pathophysiol-
ogy of PAD.

Several of the differentially regulated genes are
involved in vascular pathophysiology; for example:
DNAJB6 [37] and DUSPI1 (atherosclerosis) [38], NAMPT
(vascular inflammation) [39,40], FCAR (myocardial
infarction) [41], IL8 (vascular remodelling) [42], FFAR2
(lipid metabolism) [43] and SOD2 (idiopathic cardio-
myopathy (IDC)) [44]. Notably, several genes known to
be associated with vascular disease were upregulated as
discussed below.
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Phosphatases are known to be associated with periph-
eral arterial disease [45-47]. We noted that four phos-
phatase genes PTP4A1, DUSP1, DUSP5, PPPIRISA are
significantly upregulated in the PBMC of patients with
PAD. Apoptosis, along with inflammation and immune
response, is a key feature of vascular diseases [5,48-52].
Our study indicates genes implicated in inflammation,
immune response (FCAR, FFAR2, IL8, CFLAR, DUSPI,
NAMPT) and cell death (G0S2, KLF6, PTP4A1, CFLAR)
are differentially expressed in PBMC of PAD patients.
Oxidative-stress response is known to be associated with
PAD [53-56]; we noted that several “oxidative-stress
response” related functions were enriched in GO term
analysis and IPA analysis. Altered metabolism of vita-
mins and vitamin D deficiency has been reported to be
associated with PAD [57,58]. Enrichment analysis using
molecular event annotations (Table 6) and GO term
analysis (Table 3) indicated that vitamin metabolism
related pathways are upregulated in the setting of PAD.
Platelet aggregation is strongly linked to PAD
[1,6,59-62] and Reactome based pathway analysis

indicated that several platelet-related molecular events
were associated with upregulated genes such as PLAUR
(Table 6).

Apart from these known genes, we noted several genes
not previously associated with PAD to be differentially
expressed. Upregulation of validated gene STX11 suggests
a putative role for genes associated with vesicle trafficking
in the pathophysiology of PAD. Upregulation of FFAR2
suggests altered free fatty acid metabolism in the setting of
PAD. Further investigation of differentially regulated tran-
scription factors (for example: C5orf41, KLF6, BACH?2),
and their downstream target genes may provide additional
insights into the molecular basis of PAD.

Comparison with previous studies

Several of the differentially expressed genes identified in
the current study were previously reported to be asso-
ciated with various vascular biology processes. For
example thrombospondin-1 (THBS1) [63-65], phospha-
tases (DUSPI) [45], plasminogen activator, urokinase
receptor (PLAUR) [60], cadherins (DSC2) [66,67] and
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zinc finger proteins (ZNF207) [68-71] have been impli-
cated in vascular homeostasis and pathophysiology of
PAD. Prior microarray studies of PAD have also demon-
strated a pattern of activation of genes involved in
immune and inflammatory response [72]. Our study is
designed to identify perturbed genes in PBMCs in the
setting of PAD. Fu et al., [72] performed microarray
analysis of atherosclerotic lesions of femoral arteries,
and found that immune and inflammatory pathways
were enriched in PAD cases. We replicated the follow-
ing genes from Fu et. al’s analysis: CDKNIA, CXCR4,
KLF4, PLAUR, SAMSNI, SOD2 and THBSI. Wingrove
et al,, [10] performed whole-genome microarray analysis
on PBMCs of 27 cases with angiographic coronary
artery stenosis and 14 controls and identified 526 genes
with >1.3-fold differential expression (P < 0.05) between
cases and controls. Real time PCR in two independent
cohorts (149 cases and 53 controls) for 106 genes (the
50 most significant genes and 56 additional candidate
genes) confirmed that 11 genes were significantly differ-
entially expressed between cases and controls. The dif-
ferentially expressed genes that we identified in the
setting of PAD did not overlap with genes found by
Wingrove et al.,, [10] but we validated several genes dif-
ferentially expressed in intermediate lesions and
advanced lesions derived from femoral artery samples
analyzed by Fu et al [72]. Evans et al., [73] performed
microarray analysis of leg arteries and identified genes
involved in inflammation and lipid uptake pathways in
the setting of PAD with diabetes. Similar to observations
by Evans et al., [73] we also noted that inflammation
and related GO terms like immune response, apoptosis,
response to stress, cell proliferation and circulation were
enriched in the GO annotations of upregulated genes.
Differences in methodology, sources of mRNA and the
fact that PAD and CAD are distinct phenotypic manifes-
tations of atherosclerosis may account for the varying
results.

Integrated approach for functional interpretation

We integrated four different annotation resources for
functional interpretation of differentially expressed
genes (Figure 2). GO annotations provided a compre-
hensive view of the function and processes, pathway
enrichment using KEGG provided disease association
of differentially expressed genes, Reactome was useful
in understanding molecular events associated with
genes and IPA facilitated understanding of functional
networks (group of genes that share common func-
tions) and toxicity functions. Although annotations
shared several common entities, each tool provided a
unique perspective of the differentially regulated genes
in the setting of PAD. Further, we also employed in-
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depth biocuration strategies to understand the func-
tional and pathological relevance of differentially
expressed genes in the setting of vascular disease. Our
integrated bioinformatics approach coupled with bio-
curation provided insights into the functional reper-
toire of differentially expressed genes.

Strength and Limitations

A strength of this report is the application of integra-
tive bioinformatics pipeline employed to understand
the functional similarities, biological pathways, molecu-
lar events and functional networks, related to differen-
tially expressed genes. In addition we performed in-
depth literature curation to understand functional rele-
vance of these genes. Further we validated a novel dif-
ferentially regulated gene STXII using qRT-PCR.
Complete characterization of the genes identified in
this study in the context of their relevance to PAD will
require further validation and functional studies. We
derived the RNA from PBMC, which may have pertur-
bations in the cellular level due to fluctuation in clus-
ter of differentiation 4 (CD4) count within cases and
controls. Patients in our study were ascertained based
on ABI (ABI <0.9 for cases and ABI > 1.0 for con-
trols), additional clinical biomarkers such as T lympho-
cytes (T cells) and Natural killer cells (NK cells) or
CD4 counts were not available.

Conclusion

Gene expression profiling of circulating PBMC provided
a global overview of differential gene expression in PAD;
where 87 differentially expressed genes (47 upregulated
genes and 39 downregulated genes). Integrated bioinfor-
matics analysis of differentially regulated genes using
multiple annotation tools indicated that the differentially
regulated genes influence immune response, inflamma-
tion, apoptosis, various signalling pathways and various
functions pertaining to vascular biology. Our whole-gen-
ome expression and bioinformatics analysis suggests
that microarray based expression profiling may be useful
for characterizing biomarkers for PAD. Understanding
and validating groups of differentially expressed genes in
the setting of PAD using PBMC can improve our under-
standing of the key pathophysiological mechanisms in
the aetiology of PAD. Further clinical and functional
studies may provide additional insights into role of the
differentially expressed genes in the pathophysiology of
PAD.

Availability

Gene expression data discussed in this study was sub-
mitted to Gene Expression Omnibus (GEO) database,
and can be accessed via GEO accession ID GSE27034.
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Additional material

Additional file 1: Table S1 Statistically significant GO terms
(biological process category)Supplementary. Table S2 Functional
context and biological relevance of differentially expressed genes in
vascular diseases [38-40,42,43,46,68,74-146].
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